《因式分解》 因式分解20道题_致富项目_茶文化

茶文化>农业资讯>致富项目

《因式分解》 因式分解20道题

时间:2024-05-23 00:06:05 作者:铃铛声音效下载

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于《因式分解》 因式分解20道题的文章,本文对文章《因式分解》 因式分解20道题好好的分析和解答,希望你能喜欢,只有你喜欢的内容存在,只有你来光临,我们才能继续前行。

《因式分解》 因式分解20道题

求20道因式分解,20道解方程,20道计算!

1.a^4-4a+3

2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n

3.x^2+(a+1/a)xy+y^2

4.9a^2-4b^2+4bc-c^2 5.(c-a)^2-4(b-c)(a-b)

答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3)

2.[1-(a+x)^m][(b+x)^n-1] 3.(ax+y)(1/ax+y)

4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c)

5.(c-a)^2-4(b-c)(a-b) = (c-a)(c-a)-4(ab-b^2-ac+bc) =c^2-2ac+a^2-4ab+4b^2+4ac-4bc

=c^2+a^2+4b^2-4ab+2ac-4bc =(a-2b)^2+c^2-(2c)(a-2b) =(a-2b-c)^2 1.x^2+2x-8

2.x^2+3x-10 3.x^2-x-20 4.x^2+x-6 5.2x^2+5x-3 6.6x^2+4x-2 7.x^2-2x-3 8.x^2+6x+8

9.x^2-x-12 10.x^2-7x+10 11.6x^2+x+2 12.4x^2+4x-3

解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解.

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.

2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.

5、十字相乘法解题实例: 1)、 用十字相乘法解一些简单常见的题目 例1把m2+4m-12分解因式

分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 因为 1 -2 1 ╳ 6

所以m2+4m-12=(m-2)(m+6) 例2把5x2+6x-8分解因式

分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题 因为 1 2 5

╳ -4 所以5x2+6x-8=(x+2)(5x-4) 例3解方程x2-8x+15=0

分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5. 因为 1 -3 1 ╳ -5 所以原方程可变形(x-3)(x-5)=0

所以x1=3 x2=5 例4、解方程 6x2-5x-25=0

分析:把6x2-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1. 因为 2 -5 3 ╳

5 所以 原方程可变形成(2x-5)(3x+5)=0 所以 x1=5/2 x2=-5/3 2)、用十字相乘法解一些比较难的题目

例5把14x2-67xy+18y2分解因式 分析:把14x2-67xy+18y2看成是一个关于x的二次三项式,则14可分为1×14,2×7,

18y2可分为y.18y , 2y.9y , 3y.6y 解: 因为 2 -9y 7 ╳ -2y 所以 14x2-67xy+18y2=

(2x-9y)(7x-2y) 例6 把10x2-27xy-28y2-x+25y-3分解因式 分析:在本题中,要把这个多项式整理成二次三项式的形式

解法一、10x2-27xy-28y2-x+25y-3 =10x2-(27y+1)x -(28y2-25y+3) 4y -3 7y ╳ -1

=10x2-(27y+1)x -(4y-3)(7y -1) =[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1) 5 ╳ 4y - 3

=(2x -7y +1)(5x +4y -3) 说明:在本题中先把28y2-25y+3用十字相乘法分解为(4y-3)(7y

-1),再用十字相乘法把10x2-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]

解法二、10x2-27xy-28y2-x+25y-3 =(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y =[(2x -7y)+1]

[(5x -4y)-3] 5 ╳ 4y =(2x -7y+1)(5x -4y -3) 2 x -7y 1 5 x - 4y ╳ -3

说明:在本题中先把10x2-27xy-28y2用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)-

3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3]. 例7:解关于x方程:x2- 3ax + 2a2–ab -b2=0

分析:2a2–ab-b2可以用十字相乘法进行因式分解 x2- 3ax + 2a2–ab -b2=0 x2- 3ax +(2a2–ab - b2)=0 x2-

3ax +(2a+b)(a-b)=0 1 -b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1 -(2a+b) 1 ╳ -(a-b) 所以

x1=2a+b x2=a-b 5-7(a+1)-6(a+1)^2 =-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5]

=-(2a+1)(3a+8); -4x^3 +6x^2 -2x =-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2

+13(z-y)+6 =6(z-y)^2+13(z-y)+6 =[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2).

比如...x^2+6x-7这个式子 由于一次幂x前系数为6 所以,我们可以想到,7-1=6 那正好这个式子的常数项为-7 因此我们想到将-7看成7*(-1)

于是我们作十字相成 x +7 x -1 的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2

=3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1) =3ab^2(2a-1)(a-1) 5-7(a+1)-6(a+1)^2

=-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5] =-(2a+1)(3a+8); -4x^3 +6x^2 -2x

=-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2 +13(z-y)+6 =6(z-y)^2+13(z-y)+6

=[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2). 比如...x^2+6x-7这个式子 由于一次幂x前系数为6

所以,我们可以想到,7-1=6 那正好这个式子的常数项为-7 因此我们想到将-7看成7*(-1) 于是我们作十字相成 x +7 x -1

的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2 =3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1)

=3ab^2(2a-1)(a-1) x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5).

⑹十字相乘法 这种方法有两种情况. ①x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q)

a b × c d 例如:因为 1 -3 × 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x^2-19x-6=(7x+2)(x-3).

十字相乘法口诀:首尾分解,交叉相乘,求和凑中 ⑶分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识.

能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法. 比如: ax+ay+bx+by =a(x+y)+b(x+y)

=(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难. 同样,这道题也可以这样做. ax+ay+bx+by

=x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b)

=(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出.

2. x3-x2+x-1 解法:=(x3-x2)+(x-1) =x2(x-1)+(x-1) =(x-1)(x2+1)

利用二二分法,提公因式法提出x2,然后相合轻松解决. 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y)

=(x+y)(x-y+1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决. 7582—2582

=(758+258)(758-258)=1016*500=

20道初二因式分解题目,急!

1.若2x3+3x2+mx+1为x+1的倍式,则m= 2.因式分解3a3b2c-6a2b2c2+9ab2c3= 3.因式分解xy+6-2x-3y= 4.因式分解x2(x-y)+y2(y-x)= 5.因式分解2x2-(a-2b)x-ab= 6.因式分解a4-9a2b2= 7.若已知x3+3x2-...

帮我出20道因式分解

例1 分解因式:

(1)x2-3xy-10y2+x+9y-2;

(2)x2-y2+5x+3y+4;

(3)xy+y2+x-y-2;

(4)6x2-7xy-3y2-xz+7yz-2z2.

解 (1)

原式=(x-5y+2)(x+2y-1).

(2)

原式=(x+y+1)(x-y+4).

(3)原式中缺x2项,可把这一项的系数看成0来分解.

原式=(y+1)(x+y-2).

(4)

原式=(2x-3y+z)(3x+y-2z).

说明 (4)中有三个字母,解法仍与前面的类似.

2.求根法

我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如

f(x)=x2-3x+2,g(x)=x5+x2+6,…,

当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)

f(1)=12-3×1+2=0;

f(-2)=(-2)2-3×(-2)+2=12.

若f(a)=0,则称a为多项式f(x)的一个根.

定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.

根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.

对于二次三项式ax2+bx+c,将a和c分别分解撑两个因数的乘积,a=a1?6?1a2,c=c1?6?1c2,且满足b=a1?6?1c2+a2?6?1c1,往往写成十字的形式,将二次三项式进行分解。

例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为

2x2-(5+7y)x-(22y2-35y+3),

可以看作是关于x的二次三项式.

对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

-22y2+35y-3=(2y-3)(-11y+1).

再利用十字相乘法对关于x的二次三项式分解

所以

原式=〔x+(2y-3)〕〔2x+(-11y+1)〕

=(x+2y-3)(2x-11y+1).

上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,

它表示的是下面三个关系式:

(x+2y)(2x-11y)=2x2-7xy-22y2;

(x-3)(2x+1)=2x2-5x-3;

(2y-3)(-11y+1)=-22y2+35y-3.

这就是所谓的双十字相乘法.

以上内容是小编精心整理的关于《因式分解》 因式分解20道题的精彩内容,好的文章需要你的分享,喜欢《因式分解》 因式分解20道题这篇精彩文章的,请您经常光顾吧!

上一篇:凌志2024款ex 凌志2024款最新价格图片

下一篇:更多致富项目

本文标题:《因式分解》 因式分解20道题

本文链接:http://m.chaxuanwen.com/article/154641.html

使劲推荐

《因式分解》 因式分解20道题
《因式分解》 因式分解20道题

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于《因式分解》 因式分解20道题...

凌志2024款ex 凌志2024款最新价格图片
凌志2024款ex 凌志2024款最新价格图片

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于凌志2024款ex 凌志2024款最新...

bba销量2023 bba销量2023年各省排行
bba销量2023 bba销量2023年各省排行

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于bba销量2023 bba销量2023年各...

2024款crv大改款 2023版crv
2024款crv大改款 2023版crv

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于2024款crv大改款 2023版crv的...

耕种失败的句子有哪些 耕种失败的句子怎么写
耕种失败的句子有哪些 耕种失败的句子怎么写

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于耕种失败的句子有哪些 耕种失...

发表评论

相关推荐

实况足球2024 实况足球2023
实况足球2024 实况足球2023

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于实况足球2024 实况足球2023的...

攻击烟草的句子有哪些 攻击烟草的句子怎么写
攻击烟草的句子有哪些 攻击烟草的句子怎么写

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于攻击烟草的句子有哪些 攻击烟...

比亚迪2024营收 比亚迪营收2023预期
比亚迪2024营收 比亚迪营收2023预期

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于比亚迪2024营收 比亚迪营收202...

增程式汽车2024新车 增程式汽车2024上海能上绿牌吗
增程式汽车2024新车 增程式汽车2024上海能上绿牌吗

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于增程式汽车2024新车 增程式汽...

真的错了伤感句子说说 真的错了伤感句子图片
真的错了伤感句子说说 真的错了伤感句子图片

一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于真的错了伤感句子说说 真的错...

精选致富项目标签